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Abstract—This paper evaluates the use of vision-language mod-
els (VLMs) for zero-shot detection and association of hardhats
to enhance construction safety. Given the significant risk of
head injuries in construction, proper enforcement of hardhat
use is critical. We investigate the applicability of foundation
models, specifically OWLv2, for detecting hardhats in real-world
construction site images. Our contributions include the creation
of a new benchmark dataset, Hardhat Safety Detection Dataset,
by filtering and combining existing datasets and the development
of a cascaded detection approach. Experimental results on
5,210 images demonstrate that the OWLv2 model achieves an
average precision of 0.6493 for hardhat detection. We further
analyze the limitations and potential improvements for real-world
applications, highlighting the strengths and weaknesses of current
foundation models in safety perception domains.

Index Terms—safety, vision-language models, helmet detection,
zero-shot detection, construction

I. INTRODUCTION

The use of hard hats in construction is an instance where
appropriate safety covering can prevent injury or death and
may be enhanced by IloT-style worksite safety monitoring.
Annually, there are more than 800 casualties of construction
workers as a result of workplace accidents [1]. In 2020, the
private construction industry reported 1,008 deaths, marking
the highest number of fatalities among all private industries
[2]. Many of these fatal injuries can be lessened or avoided
with proper wearing of hard hats.

Hard hats provide essential protection against head injuries
caused by falling objects, electrical hazards, and collisions,
which are prevalent risks in construction and industrial set-
tings. Given the increased risk of fatal injuries among con-
struction workers, it is crucial to enforce stringent regulatory
safety measures within the workplace.

OSHA’s Section 1926.100 requires protective helmets for
employees in areas with possible head injury risks [3]. Despite
regulations mandating hard hat use, compliance is inconsistent,
leading to preventable injuries. Having a guideline supported
by camera detection may help workers be more aware of when
and where to wear hard hats. By properly detecting workers’
hard hat status through visual surveillance, sites can raise
awareness of the issue and assist with the enforcement of hard
hat-wearing.

The question we explore in this research is to what degree
foundation model approaches are ready for use with real-
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Fig. 1.
Hat Workers Dataset demonstrating the absence of person class annotations

Example images with ground truth bounding boxes from the Hard

world data in these safety perception domains and where
their strengths and weaknesses may lie. Therefore, in this
research, we make research contributions of (1) the evaluation
of zero-shot methods using foundation vision-language models
(VLMs) of hard-hat detection and association and (2) the
creation of an evaluation benchmark dataset for hard hat detec-
tion, titled Hardhat Safety Detection Dataset, combining and
filtering annotations of the following image source datasets:
Hard hat workers dataset [4] and the SHELSk Dataset [5].

We begin by presenting a framework for application of the
zero-shot detection method in our hardhat detection process
using a cascaded detection method. Our experimental results
with 5,210 images show that the OWLv2 model achieves an
average precision of 0.6493 on hardhat detection. We also
conduct a case study on several failed detections to analyze
the limitations of using OWLv2 for hardhat detection, and
discuss methods of improving the model for real-world robust
detection.

II. RELATED RESEARCH

Traditional machine learning object detection algorithms
historically rely on manual annotations and specialized algo-
rithms, which can be time-consuming and resource-intensive,
especially as the models are limited to learning from provided
datasets. Moreover, these methods often lack the flexibility to
adapt to new environments or variations in hardhat designs
[6].

In contrast, foundation vision-language models, or VLMs,
with their ability to generalize from text descriptions and
visual features, offer a more adaptable solution. VLMs are
a type of artificial intelligence that integrates both visual and
textual data to perform tasks requiring a deep understanding
of these two modalities, and have been useful in a variety



of real-world safety applications [7]-[11]. These models are
designed to analyze images and interpret text, enabling them
to carry out tasks such as image captioning, visual question
answering, and multimodal reasoning.

Due to being pre-trained on a much larger magnitude of
data, these models can approach unseen tasks with higher
accuracy. Our research builds on the Vision Transformer for
Open-World Localization (OWL-ViT) and the OWLv2 family
of models found in [12] and [13], and is further detailed in
[14].

We propose to evaluate foundational VLMs’ zero-shot learn-
ing capability for their readiness for use in the detection
of hard hats within real-world data. Other researchers have
applied various methods towards the same task of hard hat
detection. Xie et al. [15] proposed the CAHD algorithm,
a convolutional neural network based hard-hat detection al-
gorithm. This algorithm achieved a mAP of 54.6% on the
ImageNet Dataset [16]. However, the ImageNet dataset only
shows objects in central focus, unlike real-world images where
the object can be in the background, which we choose to
address.

III. METHODOLOGY

Accurately detecting and enforcing the use of protective
gear like hard hats is a task that remains challenging despite
advancements in object detection models. The inconsistencies
and incomplete annotations in existing datasets, such as the
Hard Hat Workers Dataset [4], further complicate this task,
leading to unreliable performance metrics and hindering the
development of effective safety solutions. Our methodology
aims to address these challenges by releasing a new dataset
that addresses the dataset issues and detailing our cascaded
detection strategy using the OWLv2 model.

A. Data Preprocessing

We used the dataset provided by Hard Hat Workers Dataset
[4] and SHELSk Dataset [5]. The Hard Hat Workers Dataset
gives three classes: helmet, head, and person.

There are 7,063 images and 5,000 images within the Hard
Hat Workers Dataset [4] and the SHELSk Dataset [5], re-
spectively. However, the Hard Hat Workers Dataset is largely
inconsistent with their annotations, as many of the images
don’t have any ‘person’ class even though a person is evidently
within the image as shown in Figure 1. There are a few excep-
tion cases where the annotation is labeled correctly. With these
inconsistencies, it is impossible to get a representative metric
of the accuracy of the OWLv2 model, as the detections will
be judged inaccurate for nonexistent annotations. Therefore,
we filtered out all the images from this dataset and separated
only the correctly labeled images with the person class.

Additionally, we selectively chose the annotations from the
SHELS5k dataset to align with the Hard Hat Workers dataset to
maintain consistency. The SHELSk originally consisted of the
following 6 classes: helmet, head with helmet, person with
helmet, head (head without helmet), person without helmet,
and face. We show sample data of these classes in Figure 2.

Fig. 2. Example instances of classes cropped from the SHELSk dataset.
From left to right: Helmet, Head with Helmet, Person with Helmet, Head
(Head without Helmet), Person without Helmet, and Face. However, not every
object in the SHELF5k dataset receives every annotation it belongs to.

TABLE I
GROUND TRUTH DATA
Class | Frequency
Head with Helmets 16,652
Helmets 19,856
Heads 6,158
Persons 20,631
Total [ 63,297

This resulted in a total of 5,210 images from both datasets
for our benchmark dataset, titled Hardhat Safety Detection
Dataset '

The new dataset contains 16,652 Helmets (Head with hel-
mets), 20,631 Persons, and 6,158 Heads for our cascaded ap-
proach and 19,856 Helmets for our nested and direct approach.
The frequencies are shown in Figure |

B. Cascaded Approach

We implemented a cascaded detection approach with
OWLvV2 to determine whether construction workers are wear-
ing hard hats. This method starts to detect a higher-level class,
‘person’ and then progressively narrows down the image to
identify sub-classes in the sequence of ‘head’ and ‘hard hat’.
The benefit of such an approach is an automatic association of
a higher-level class with its lower-level attributes or features
[17], [18].

Our approach works by recognizing that categories like
‘person’ and ‘head’ are related in a hierarchy. First, we detect
the broader category, ‘person’. Once we identify a person in
the image, we then focus on the ‘head’ within that area. From
there, we can further determine whether the person is wearing
a hardhat. This allows the association of hard hat wearing to
the person while improving the detection rate by concentrating
on specific parts of the image

We begin with our person detection. We give an image
and the text prompt, ‘person’, as input to OWLv2. The
image is normalized and resized while the text is encoded
by CLIPTokenizer, from [19], to be wrapped by the processor
with the normalized image.

After detecting a person, we extract and rescale the corre-
sponding bounding boxes, cropping the relevant section from
the image. This cropped image is used as input for the second
step, where OWLV2 is prompted with the text ‘head’ to detect
the person’s head.

Thttps://www.kaggle.com/datasets/IcscO0/hardhatdetect
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Fig. 3. Diagram of Cascaded Object and Attribute Detection. From the
original image, we detect all instances of persons. Within each person, we
detect a head and then detect a helmet within the head. If a helmet detection is
made, we classify the head as helmet-wearing. All detections, including helmet
detection for the purpose of classification, are performed using OWLv2.
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Fig. 4. Diagram of Nested Object and Attribute Detection. Diagram of
Cascaded Object and Attribute Detection. From the original image, we detect
all instances of persons. Within each person, we detect a helmet. All detections
are performed using OWLv2.

Finally, we proceed to the last level of detection. The
bounding box from the head detection is again cropped from
the original image and used as input, along with the text
prompt ‘helmet’. At this stage, we classify whether a hard hat
is present, determining a boolean value based on the detection.
This process does not require finding another bounding box
but rather identifies the presence or absence of the hard hat
as an attribute of the detected head. This cascaded detection
process is shown in Figure 3, and the nested is in Figure 4.

IV. EXPERIMENTAL METHOD AND EVALUATION

Using the cascaded object and attribution detection algo-
rithm detailed in the previous section, we performed hard hat
detection on the combined dataset, with further implementa-
tion details described in this section. The evaluation metric we
utilize for our task is the average precision (AP), as well as
precision and recall across thresholds.

We performed detections within the 5,210 images in the
combined dataset. Our detections were conducted across sev-
eral thresholds, ranging from 0.05 to 0.5, to calculate the

precision-recall curve. With this threshold sweep, we calcu-
lated the AP.

The threshold for OWLv2 is the minimum confidence
threshold to use to filter out predicted boxes. It is the value
that determines the minimum level of confidence required for
OWLv2’s detection to be accepted as a valid positive detection.
OWLvV2 calculates confidence through logits per image.

The intersection over union (IoU) is defined as the ratio
of the area of overlap between the predicted bounding box
and the ground truth bounding box to the area of their union.
We use this as our evaluation metric by observing if the IoU
is greater or less than 0.5 to determine whether detection is
a true positive or false positive. The IoU is calculated by:
IoU = ﬁ%g or [oU = %, where A stands for
the predicted bounding box and B stands for the ground truth
bounding box.

To evaluate our cascaded methodology of a hierarchical
multi-stage detection and observe its effectiveness, we ad-
ditionally tested a nested detection approach and a direct
detection approach of hard hats. The nested detection was
performed by detecting persons and then detecting hard hats
within the person’s bounding box. However, we note that the
direct detection approach does not address the association task
of the hard hat to a person, detecting hard hats on the ground.
As with the complete cascaded detection, we performed a
hyperparameter sweep of the threshold for both processes to
compare the APs of hard hat detection.

Additionally, for our data, when using the cascaded ap-
proach, we treated all people (whether wearing a helmet
or not) as one single class and did not focus on detecting
annotations of faces or isolated helmets since we only con-
cerned ourselves with helmets associated with a person’s head.
However, when testing nested detection and direct detection,
as described in Section IV, we used the isolated helmet class
rather than the head with helmets.

The definition of ground truth varies for different categories.
In person detection, all instances of persons are considered as
ground truth, and for head prediction, every head without a
helmet is the ground truth. However, for helmets, we include
all helmets, even those on the ground, when computing the
metrics. This causes errors in false negatives for the nested
detection approach as it can only detect helmets on a person.
Re-annotating the dataset is needed to resolve this issue.

A. Results

We analyzed the detection accuracies separately for hard
hats, heads, and persons. The results of the evaluation of
the effectiveness and efficiency of each detection strategy for
hard hat detection are provided in Table II. We notice that as
we remove the layers of detection, the precision and recall
improve significantly, as shown in Figure 7.

The results of the person detection for both the nested and
the cascaded detection approach are shown in Figure 5, with
an average precision, calculated by area under the curve, of
0.6767. However, we notice an abnormal low point at the
beginning of the precision-recall curve, referencing that as the



TABLE II
COMPARATIVE EVALUATION OF DETECTION METHODS THROUGH
AVERAGE PRECISION(AP) OF HARD HAT DETECTION

Detection Method [ AP (Area under the curve)

Direct (Hard Hats) 0.6493
Nested (Person — Hard Hats) 0.4672
Multistage (Person — Head — Hard Hats) 0.2699
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Fig. 5. Precision-Recall Curve of Person Detection. At higher thresholds,
OWLV2 is not able to make enough relevant detections. Throughout lower
thresholds, the curve decreases slowly, suggesting high performance in person
detection.

threshold was raised, the OWLv2 made too few detections for
any relevant detections to be made.

The accuracy of the head class (heads without helmets) is
shown in Figure 6 with an average precision of 0.1024.

V. DISCUSSION

As shown in Table II and Figure 7, the removal of cascading
levels within the detection strategy improves performance.
This is due to the fact that as we continue to crop the image
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Fig. 6. Precision-Recall Curve of Head Detection. At higher thresholds,
OWLV2 can hardly make any relevant detections. The curve peaks at 0.179
and decreases. This demonstrates overall poor performance in head detection,
having low precision, especially with higher recall values.
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Fig. 7. Precision-Recall Curves of the Different Approaches to Hard Hat
Detection. The Direct Detection has a strong performance, maintaining a
high precision throughout all recall values. The Nested Detection contrasts by
starting with at a lower point, peaking at 0.8995, and then quickly decreasing.
Finally, the Cascaded Detection demonstrates the poorest performance, start-
ing off with high precision but rapidly declining, making its average precision
the worst.

multiple times, the image quality gets progressively worse,
meaning with more stages of detection and cropping, the more
inaccurate the final stage of detection will be. Additionally, the
final stage, the hard hat detection, depends on the upper levels
of detection, meaning that if the head or person is detected
inaccurately or not detected at all, the hard hat has 0 chance
of being detected, further reducing accuracy.

Therefore, adding layers to the detection approach adds
more variables of error and reduces accuracy, proving that
a direct detection approach is the most accurate. However, to
address the task of associating a hardhat with a person, having
at least the nested detection approach is necessary.

Additionally, the head detection within the cascaded detec-
tion was shown to have very poor performance. This may
extend the problem described above. As helmet detection
doesn’t have the best accuracies due to the reduction of quality
by cropping, the rest of the detected heads are classified as
heads without helmets. This means that there are many false
positives for heads without helmets and many false negatives
for helmets, resulting in a decrease in the precision of the head
detection and the recall of the helmets.

One nuance of removing the head detection step is that
people who are holding helmets will be classified as helmet-
wearing, even though they are not wearing it. When observing
the data, we notice that possible sources of error include in-
complete annotations, obstruction, and similar-looking objects,
as shown in Figure 8. To mitigate these issues, capturing and
analyzing multiple images of the same scene while improving
annotations could help reduce errors and improve accuracy.

VI. CONCLUDING REMARKS AND FUTURE RESEARCH

We have demonstrated the potential of using foundation
vision-language models for zero-shot detection of hard hats to
enhance safety on construction sites. By creating the Hardhat



Fig. 8. Sample images of the dataset of different angles with different
environments, showing potential sources of errors. The left image is the
ground truth of the annotations of the cascading approach, and the right
is the prediction. From top to bottom: incomplete annotations, obstruction,
similar-looking objects. As shown in the top row, OWLv2 on the right detects
the few people at the top of the image. However, there are no ground truth
bounding boxes for those persons, as shown in the left image. Additionally,
the helmet(head with helmet) class follows this trend, only having 4 instances
when it should have 9. This suggests that some failures may be due to
inaccuracies in the ground truth annotations, as similar issues have been
observed in other cases. Furthermore, in the middle row, the construction
worker in the background is obscured by the person in front, and their hunched
posture makes it difficult to recognize the shape of their head and helmet
accurately. OWLV2 detects the person but not the helmet, while the ground
truth only provides the helmet of the individual in the back. Finally, in the third
row, the model mistakenly identifies construction machinery as a person and
erroneously classifies parts of the machinery as a helmet. This case highlights
that OWLv2’s performance may still fall short of expectations.

Safety Detection Dataset and using the OWLv2 model in
a cascaded detection approach, we found that direct detec-
tion of hard hats yields higher accuracy compared to multi-
stage cascaded methods due to image quality degradation
and compounding errors. Despite these challenges, associating
detected hard hats with individuals is crucial for practical
safety, emphasizing the need for robust annotations in datasets.

Future research should focus on several key areas to enhance
the efficacy and reliability of hard hat detection. Improving
and expanding datasets with comprehensive annotations is
essential to address missing instances and to develop separate
annotations for helmet-person association and detection. Ad-
ditionally, developing techniques to avoid quality reduction in
the cascaded detection approach and exploring state-of-the-art

models and hybrid approaches can offer significant improve-
ments. Furthermore, reducing false positives and negatives
remains a critical challenge, and techniques such as multi-
frame analysis, context-aware detection, and incorporating ad-
ditional sensory data should be explored to enhance detection
reliability.

Future research can significantly improve occupational
safety by addressing these areas. The advancement of VLMs
holds great promise for creating safer work environments.
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